
Paper written by Robert Lyda & James Hamrock
Presented by Kevin Chu

Using Entropy Analysis to Find Encrypted 
and Packed Malware



Keywords

◆ Entropy - level of difficulty or the probability of 
independently predicting each number in a series.

◆ Bintropy - a binary entropy analysis tool that the 
researchers used

◆ PE Executable - standard binary file format for an 
Executable or DLL

◆ Confidence interval - % chance that results holds true on 
repeated sampling

2



What is Entropy Analysis?

◆ Entropy analysis examines the statistical variation in 
malware executables.

◆ This would allow analysts to quickly and efficiently identify 
packed and encrypted samples.

3



Why do we care?

◆ Malware authors use encryption or packing (compression) to 
conceal their malicious executables’ string data and code.

◆ These methods, which transform some or all of the original 
bytes into a series of random-looking data bytes, appear in 80 
to 90 percent of malware samples.

◆ This is a convenient and quick technique for analyzing a sample 
at the binary level and identifying suspicious PE file regions

4



Approach

◆ They used the Bintropy tool on four separate tests with 
training data sets for native, compressed, encrypted, and 
plaintext files.

◆ Native - 100 Windows 32-bit PE executables
◆ Packed - executables generated by using UPX             and 

Morphine 1.2
◆ Encrypted - executables encrypted by Pretty Good Privacy

5



Approach (con’t)

◆ The experiments showed that executables generally contain 
many blocks of mostly zero-value data bytes, which compilers 
commonly generate to pad or align code sections. This 
technique can greatly reduce an executable’s entropy score, 
because it increases the frequency of a single value.

◆ To compensate for this, Bintropy was altered to analyze only 
“valid” byte blocks (blocks in which at least half of the bytes are 
nonzero).

6



Results
7



Results (con’t)

◆ Using a 99.99 percent confidence level, executables with an average 
entropy and a highest entropy block value of greater than 6.677 and 
7.199, respectively, are statistically likely to be packed or encrypted.

◆ These two values are the lower confidence interval bounds of the 
entropy measures we computed for packed executables, and form the 
basis for the methodology for analyzing malware executables for the 
presence of packing or encryption.

◆ If both the Bintropy computed average file entropy and highest 
entropy block score exceed these respective values, it labels a 
malware executable as packed or encrypted.

8



Results

◆ The eight standard sections: .text, .
data, .rsrc, .reloc, .rdata, .idata, 
CODE, and DATA are created by 
default by most PE-generating 
compilers.

◆ The remaining five sections: .
aspack, UPX1, UPX2, pec1, and 
pec2 are created by packing 
technologies that replace the 
default PE-formatted sections and 
their bytes with custom ones

9



Results
10



Evaluation

◆ In 2000, .reloc was the most often packed or encrypted section. This section’s 
popularity steadily declined across the remaining years, with only a slight 
increase in 2005. 

◆ The second most-packed section in 2000 was UPX1, which is generated by 
the very popular UPX packing tool. Due to UPX’s prevalent use in numerous 
W32/GAOBOT and W32/SPYBOT variants, the presence of the UPX1 section 
in the data set increased over the next few years, peaking in 2002. 

◆ Thereafter, its prevalence steadily decreased, but UPX1 remained the most 
popular of all the sections we identified as packed across this six-year period, 
followed by the .text section, which is where the compiler writes most of a 
program’s executable code.

11



Limitations

◆ It’s infeasible to absolutely determine if a sample contains 
compressed or encrypted bytes.

◆ False negatives can occur when large executables (those larger than 
500 kbs) contain relatively few encrypted or compressed blocks and 
numerous valid blocks, thereby lowering the executable file’s average 
entropy measure.

◆ A standard t-test was applied to the data set, and it calculated a Type 
I error’s significance level (the false positive rate) to be 0.038 percent.

◆ Sophisticated malware authors could employ countermeasures to 
conceal their encryption or compression use.

12



Future considerations

◆ Analysts can perform further detailed analysis with other 
reverse-engineering tools, such as the IDAPro 
disassembler.

◆ A more fine-grained approach might be useful in 
identifying the particular transformation algorithms that 
malware authors apply to their malware.

13



Discussion & Questions

◆ Was there anything unclear about it?
◆ What did you like about it? Dislikes?
◆ What did you learn?
◆ Other applications?

14


